Article 1320

Title of the article

ANALYSIS OF THE DIFFRACTION EFFICIENCY OF ONE-DIMENSIONAL BINARY DIFFRACTION
GRATING BY THE PLANE WAVE EXPANSION METHOD (THE TE-POLARIZATION CASE)

Authors

Tsupak Aleksey Aleksandrovich, Candidate of physical and mathematical sciences, associate professor, subdepartment of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), altsupak@yandex.ru

Index UDK

517.958:535.4

DOI

10.21685/2072-3040-2020-3-1 

Abstract

Background. The aim of this work is to study the diffraction of an electromagnetic TE-wave by one-dimensional cylindrical diffraction gratings.
Material and methods. The problem is considered in rigorous electromagnetic formulation, for its solving the method of plane waves expansion is used; the Jacobi rotation method is used for the numerical solving of the auxiliary eigenvalue problem.
Results. The plane wave method has been implemented in software; computational experiments have been carried out, which have confirmed the convergence and stability of the method.
Conclusions. The results of computational experiments are consistent with both theoretical and numerical results previously published by other authors. The described numerical method can be efficiently used to solve problems of modeling one-dimensional periodic gratings with specified characteristics. 

Key words

diffraction gratings, plane wave expansion method, eleсtromagnetic TE-waves , diffraction efficiency.

 Download PDF
References

1. Shestopalov V. P., Kirilenko A. A., Masalov S. A., Sirenko Yu. K. Rezonansnoe rasseyanie voln. T. 1. Difraktsionnye reshetki [Resonant scattering of waves. Volume 1. Diffraction gratings]. Kiev: Naukova dumka, 1986, 232 p. [In Russian]
2. Shestopalov V. P., Sirenko Yu. K. Dinamicheskaya teoriya reshetok [Dynamic lattice theory]. Kiev: Naukova dumka, 1989, 216 p. [In Russian]
3. Moharam M. G., Grann Eric B., Pommet Drew A. J. Opt. Soc. Am. A. 1995, vol. 12, no. 5, pp. 1068–1077.
4. Popov E. Gratings: Theory and Numeric Applications. Second Revisited Edition. Institut Fresnel, AMU, CNRS, ECM, 2014, 59 p.
5. Bakhvalov N. S. Chislennye metody (analiz, algebra, obyknovennye differentsial'nye uravneniya) [Numerical methods (analysis, algebra, ordinary differential equations)]. Moscow: Nauka, 1973, 632 p. [In Russian] 
6. Verzhbitskiy V. M. Osnovy chislennykh metodov [Numerical basics]. Moscow: Vysshaya shkola, 2002, 840 p. [In Russian]
7. Junming Chen et al. Proc. of SPIE. 2017, vol. 10339, pp. 1033–911.
8. Kim Inki et al. J. Phys. Photonics. 2020, vol. 2, pp. 025–004.

 

Дата создания: 30.11.2020 09:38
Дата обновления: 30.11.2020 09:51